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SOLUTION TO PROBLEM SET 7
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1. We will need to use fictitious forces to
solve this problem easily. Fictitious forces are
never necessary, but they often simplify prob-
lems greatly.

(a.) We want to know the minimum speed the
cyclist needs not to slip down the side. The
force of static friction must be mg to hold him
up, so we require that µN = mg. The force of
static friction can be less than µN , but we are
setting it to the maximum to see what the limit
is. Thus we need N > mg/µ. The only force
acting horizontally in the system is the normal
force, so it must entirely provide the centripetal
acceleration, which is v2/R. We thus obtain

mv2

R
≥ mg

µ
⇒ v ≥

√
gR

µ

(b.) We now need to consider the fictitious
centrifugal force. The cyclist is in an acceler-
ating frame of reference because he is moving
in a circle. To correctly apply Newton’s second
law in the cyclist’s frame, we must introduce
the centrifugal force, which points outward with
magnitude mv2/R. In the frame of the cy-
clist there are four forces: the normal force and
the centrifugal force cancel each other, and the
friction and gravity cancel each other. This is
required to insure that, by definition, the cyclist
isn’t accelerating in his own frame of reference.
The problem is now reduced to a torque balance
to find the angle at which the cyclist is stable.

We choose the point of contact as the origin.
There are two torques, τg caused by gravity and
τc caused by the centrifugal force. Both act at
the center of mass. (This is important to note:
fictitious forces always act at the center of mass!)
We are assuming that the size of the cyclist l is
very small in comparison with the radius R, so

τg = +mgl cosφ τc = −mlv
2

R
sinφ

We want to know the angle where the cyclist is
about to slip, so the normal force is mg/µ, equal
to the centripetal force mv2/R. Substituting for
mv2/R in the above equation,

mgl cosφ = mgl
1
µ
sinφ ⇒ tanφ = µ

So when the cyclist is about to slip, he rides at
an angle

φ = tan−1 µ

(c.) Taking µ = 0.6 and R = 5 meters, we find
that the cyclist must ride at a speed of least 9.0
meters per second, or 29.5 ft/sec, or 20.1 mph.
On a road bike this is a mellow cruising speed.
At this minimum speed, the angle the cyclist
must make with the horizontal is 31 degrees. We
caution you not to try this at home; it’s tough
to get up to speed without crashing!

2. K&K problem 6.24

This problem is similar to many pulley problems
that you have seen before. We need to apply
both Newton’s second law and the torque equa-
tion to solve it. We denote the (positive down-
ward) acceleration of the falling mass as a. There
are two forces on it in the vertical direction, ten-
sion and gravity. Newton’s second law requires

Mg − T =Ma

We now need to apply the torque equation to
both drums. For each drum we choose its own
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center as the origin. Each drum feels only one
torque, the torque from the tension. This has a
magnitude τ = TR in both cases. Notice that
both of these torques have the same sign, thus
the drums will tend to angularly accelerate in
the same direction. Writing the torque equation
for each drum, with angular accelerations α1 for
the top drum and α2 for the bottom drum,

TR = Iα1 TR = Iα2

where the moments of inertia of both disks are
the same, I = MR2/2. From these equations it
is easy to see that α1 = α2 ≡ α = TR/I, so the
angular accelerations are both

α =
2T
MR

We now need to find a relation between a and α.
The linear acceleration due to each disk is given
simply by a = αR. There are two disks, both
unwinding with the same angular acceleration α,
so the linear acceleration of the bottom one is
just a = 2αR. The previous equation becomes

a =
4T
M

⇒ T =
Ma

4

Plugging this into the very first equation that
we got from Newton’s law, we find the initial ac-
celeration of the drum, assuming that it moves
straight down, to be

a =
4
5
g

Will the drum in fact move straight down? For
the moment assuming that the answer is “yes”,
consider a (downward accelerating but nonrotat-
ing) frame with its origin at the (instantaneous)
point of tangency between the lower drum and
the tape. In this frame, the CM of the drum ex-
periences a downward force mg and an upward
fictitious force 4

5mg which does not quite com-
pensate it. Therefore it feels a net downward
force 1

5mg. About the chosen origin this force
causes a net (clockwise) torque, which causes
the lower drum to swing to the left like a pen-
dulum bob in this frame. This contradicts our

assumption of a pure downward motion. There-
fore the actual motion will be more complicated
than this problem asks you to assume.

3. K&K problem 6.27

We need to apply both Newton’s law and the
torque equation. The forces on the yo-yo hori-
zontally are the force F and the friction f . The
vertical forces are the normal force and grav-
ity, which immediately tell us that N = Mg.
We want to find the maximum force we can
apply with the yo-yo not slipping. It is impor-
tant to note that the force of friction, which
stops the disk from slipping, is controlled by the
coefficient µs of static friction because the sur-
face of a rolling wheel is at rest with respect
to the ground. Since we are concerned with
the maximum allowed force, we will consider
the maximum allowed friction, which is µsN .
Newton’s law gives us

F − µsMg =Ma

The moment of inertia of the yo-yo is I =
MR2/2. Because we want the yo-yo to roll with-
out slipping, we can use a = αR. The torque
equation gives us

µsMgR− Fb = Iα =
1
2
MRa

We want to solve these two equations for F , the
maximum allowed force. Eliminating a, we get

F − µsMg = 2µsMg − 2F
b

R

Solving for F , we get

F = µsMg
3R

R+ 2b

Since R > b the applied force F is always larger
than the frictional force, so the yo-yo always
accelerates to the right.

4. We will solve this problem symbolically and
plug in numbers at the end. This is always a
good practice because it makes it a lot easier to
go back and check your work for correct dimen-
sions and reasonable results for limiting cases.
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(a.) Let the disk have mass M and radius R,
and the two men each have mass m. If the men
are momentarily at a radius r from the center of
the disk, the total moment of inertia is given by

I(r) =
1
2
MR2 + 2mr2

The initial angular velocity of the disk is ω0, so,
when r = R, the initial angular momentum of
the system is

L = Iω0 =
(
1
2
M + 2m

)
R2ω0

There are no net torques acting on the system,
so L is conserved. We can use L conservation,
I(r)ω(r) = I(R)ω0, to obtain the angular veloc-
ity of the system as a function of the radius of
the men:

ω(r) = ω0
MR2 + 4mR2

MR2 + 4mr2

The final angular velocity ω′ is just the an-
gular velocity when the men reach the center,
ω(r = 0).

ω′ = ω0
M + 4m
M

=
(
1 +

4m
M

)
ω0

Plugging in values, we find that the final angular
velocity is 1.5 revolutions per second.

The factor by which the kinetic energy has
increased is

Kf

Ki
=

1
2I(0)ω

′2
1
2I(R)ω

2
0

Evaluating this, we find

Kf

Ki
=

1
4MR2

(
1 + 4m

M

)2
ω2

0
1
4MR2ω2

0 −mR2ω2
0

Simplifying,

Kf

Ki
= 1 +

4m
M

∆K =
4m
M
Ki

For the masses in the problem, Kf/Ki is equal
to 3. The rotational kinetic energy is tripled.

(b.) The extra kinetic energy comes from the
work that the men must do against the (ficitious)
centrifugal force to make their way from the edge
of the turntable to the center. This is the qualita-
tive statement which the problem requests. Op-
tionally, one can perform a quantitative analysis:

Each man pushes against the centrifugal
force to get to the center. The work they do
is converted to rotational kinetic energy. The
centrifugal force on each man is given by

Fc = m(ω(r))2r = mω2
0r

(
1 + 4m/M

1 + 4mr2/(MR2)

)2

The work done is just Fc integrated from zero
to R, doubled since each man does the same
amount of work.

∆W = 2mω2
0

(
1 +

4m
M

)2 ∫ R

0

r dr

(1 + 4mr2

MR2 )2

You can look this up in a table, or notice that
the top is proportional to the derivative of the
bottom, so antidifferentiating is not too hard:

∆W = −2mω2
0

(
1 +

4m
M

)2
(
MR2/8m
(1 + 4mr2

MR2 )2

)R

0

Evaluating this, we get

∆W =
MR2ω2

0

4

{(
1 +

4m
M

)2

−
(
1 +

4m
M

)}

Multiplying this out,

∆W =
MR2ω2

0

4

(
4m
M

+
16m2

M2

)

Simplifying,

∆W = mR2ω2
0 +

4m2

M
R2ω2

0

=
(
1 +

4m
M

)
mR2ω2

0
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This is 4m/M times the initial kinetic energy, so,
as expected, ∆W is equal to the kinetic energy
gain ∆K that we already calculated.

(c.) We want to find where the maximum cen-
trifugal force is felt. This is just a maximization
problem. Differentiate Fc with respect to r and
set it to zero, and also check the endpoints.

dFc

dr
=
d

dr

(
mω2

0r
(1 + 4m/M)2

(1 + 4mr2/MR2)2

)
= 0

This gives

1− 16mr2

MR2

1
1 + 4mr2/MR2

= 0

We can solve this for r. Set x = 4mr2/MR2.
Then 1− (4x/(1 + x)) = 0 so x = 1/3, and

4mr2

MR2
=

1
3

⇒ r = R

√
M

12m

If we plug in the mass values for this problem, we
obtain r = R/

√
6. Since the centrifugal force is

everywhere positive, and it is zero at the center,
this extremum must in fact be the maximum.

5. K&K problem 7.4

Referring to the diagram, the stone orbits around
the vertical shaft with orbiting angular velocity
Ω. The velocity of the stone’s CM is thus
v = ΩR. The stone is rolling without slipping on
the flat surface, so its rolling angular velocity is

ω =
v

b
= Ω

R

b

in magnitude. Since angular velocity is a vector,
we can add these separate components to obtain
the full angular velocity vector. In cylindrical
coordinates, with ẑ pointing along the axis of
the orbit,

ω = −R
b
Ωr̂+Ωẑ

where the leading minus sign tells us that the
radial component of ω is negative, i.e. the mill-
stone is rotating clockwise about its horizontal
axle. To calculate the angular momentum, we
choose as an origin the intersection of the cen-
terline of the vertical shaft and the centerline
of the horizontal axle. Both the shaft and the
axle are parallel to mirror symmetry axes of the
millstone; thus we expect that the component
of angular momentum due to Ω will be parallel
to Ω, and the component of angular momentum
due to ω will be parallel to ω. More quanti-
tatively, the component Lz along ẑ is equal to
(I ′ +MR2)Ω, where I ′ = 1

4Mb2 is the moment
of inertia of a disk about a diameter and MR2

is added to I ′ by use of the parallel axis theo-
rem. Since Lz is constant, no torque is required
to maintain it and we don’t need to consider it
further. To calculate the radial component Lr

of the angular momentum, we need I = Mb2/2,
the moment of inertia of a disk about its center:

Lr = −1
2
Mb2ω

where the minus sign again reminds us that the
millstone is rolling clockwise about its horizontal
axle. Remember that, in cylindrical coordinates,
the only unit vector which is constant is ẑ; the
radial and azimuthal unit vectors depend on θ.
Even though the magnitude of Lr is constant,
its direction is changing. In a time increment dt,
the azimuth θ of the millstone axle with respect
to the shaft changes by an angular increment
dθ = Ωdt. This causes L to change by

dL = θ̂Lrdθ

= θ̂LrΩdt

= −θ̂
1
2
Mb2ωΩdt
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The torque is thus

τ =
dL
dt

= −θ̂
1
2
Mb2ωΩ

Finally we consider the forces on the sys-
tem. The vertical shaft exerts a force on the
horizontal axle, gravity pulls down on the mill-
stone’s CM, and the normal force pushes up on
the millstone. However, with respect to the cho-
sen origin, the first of these forces can exert no
torque because it is applied at r = 0. The torque
due to gravity is in the +θ̂ direction, and the
torque due to the normal force N of the flat
surface on the millstone is in the −θ̂ direction.
Thus, in the +θ̂ direction, we have

−NR+MgR = τ = −1
2
Mb2ωΩ

M
(
g +

1
2
b2

R
ωΩ

)
= N

Substituting ω = RΩ/b,

N =M

(
g +

1
2
bΩ2

)

Of course, by Newton’s third law, the contact
force exerted by the millstone upon the flat sur-
face is equal and opposite to N . As advertised,
the effective weight of the millstone for crushing
grain is greater than Mg; this increment rises
quadratically with the angular velocity.

What keeps the millstone from accelerat-
ing upward, since the upward normal force on it
is greater than the downward force of gravity?
The force of the vertical shaft on the horizontal
axle, which we ignored in the torque equation
because it is applied at the origin, must push
downward, in alignment with gravity, with the
value MbΩ2/2.

Such millstones must have been in use be-
fore the time of Newton, so the benefits of their
increased effective weight when rolling in a cir-
cle must have been discovered empirically rather
than logically.

6. K&K problem 7.5

(a.) If the flywheel were horizontal with its spin
axis pointing up, it would have little effect, since

the direction of its angular momentum would
not change as the car turns left or right. So
the flywheel should be vertical with its spin
axis pointing either sideways or forward. Decid-
ing between these alternatives requires a more
quantitative analysis.

Let’s look at the car from the rear while it
is in motion with speed v. First we’ll consider
the car without any flywheel. Suppose that the
car is in the process of turning to the left, tak-
ing a turn of radius R0. Adopt a reference frame
attached to the car, with an origin halfway be-
tween the tires at the level of the road. It is easy
to see why the act of turning causes the nor-
mal forces on the tires to become unbalanced.
The sum of the torques on the car must remain
zero if the car (assumed to have no suspension
system, so it doesn’t lean) keeps all four tires
on the road. With respect to the origin chosen,
the forces of friction on both tires can exert no
torque, because these forces act directly toward
or away from the origin. Neither can the force of
gravity exert a torque about this origin, for the
same reason. That leaves Nl and Nr, the nor-
mal forces on the left and right sets of tires, and
Mv2/R0, the fictitious centrifugal force which
pulls the CM to the right in this accelerating
frame. Let the CM be a distance d above the
road; let the right-left separation of the wheels
be 2D. Along −v̂, the sum of the torques is then

−NlD +NrD − Mv2

R0
d = 0

Clearly Nr must exceed Nl if this equation is to
be satisfied. This is the problem we are trying
to solve with the flywheel.
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The torques that we just considered were
along −v̂. If the flywheel is to help, its an-
gular momentum L should be directed so that,
when the car turns left, the flywheel produces
a torque on the car equal to +Mv2d/R0 along
−v̂. By Newton’s third law, the torque of the
car on the flywheel should correspondingly be
equal to +v̂Mv2d/R0. So, as the car turns left,
the change in L of the flywheel should be di-
rected along +v̂. This will happen if the angular
momentum vector of the (vertical) flywheel is
pointing to the right. This means that the fly-
wheel should rotate in the opposite direction as
the tires. For simplicity, we’ll install it at height
d from the road so as not to perturb the CM.

It’s not necessary to reverse the flywheel di-
rection for right as opposed to left turns, because
both the centrifugal force and the change in L
will correspondingly reverse direction.

(b.) Now that we have determined the flywheel
direction, we can calculate the desired magnitude
L of the flywheel’s angular momentum. We have

dL

dt
= LΩ =Mv2d/R0

where Ω = v/R0 is the angular velocity of the
car around the turn. Solving,

L =Mvd

For a disk-shaped flywheel of mass m and ra-
dius r, I = mr2/2, and the flywheel’s angular
velocity should be

ω =
2Mvd

mr2

This is independent of the turn radius R0, which
is very nice. We’ve achieved perfectly flat cor-
nering for a turn of any radius! Unfortunately,
ω depends linearly on the velocity v of the car.
So, unless we can come up with a quick easy way
of varying the kinetic energy of a big flywheel in
concert with the square of the car’s speed, we’re
not going to get rich installing these devices as
high-performance vehicle options.

7. K&K problem 8.2

(a.) The acceleration of the truck is A, and
the mass and width of its rear door are M and
w. The door starts fully open. The door can
be thought of as a series of thin sticks, pivoted
about their ends. The moment of inertia of the
door is thus

I =
1
3
Mw2

The easiest way to find the angular velocity of
the door is to use work and energy. The rota-
tional kinetic energy is given by

K =
1
2
Iω2

The work done by a torque on a system is given
by

W =
∫
τ · dθ

In this system there is one torque of interest.
We use the hinge of the door as the origin, so
the only torque comes from the fictitious force of
acceleration. When the door has swung through
an angle θ, this torque is given by

τ =
1
2
MAw cos θ

Note that w/2 is just the distance to the center
of mass. From this we can easily calculate the
work done from 0 to 90 degrees.

W =
∫ π/2

0

1
2
MAw cos θ dθ =

1
2
MAw

Substituting the expression for rotational kinetic
energy, we find the angular velocity of the door
after it has swung through 90◦:

1
2
Iω2 =

1
2
MAw ⇒ ω =

√
3A
w

(b.) The force on the door needs to do two
things. It needs to accelerate the door at a rate
A, and it needs to provide the centripetal ac-
celeration to make the door rotate. At θ=90
degrees, the torque is zero, so the angular veloc-
ity is not changing. Instantaneously, the door is
in uniform circular motion. The force required
to accelerate the door is just

FA =MA
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The force required to provide the centripetal
acceleration is

Fc =Mω2w

2
The total force is the sum of these, and they act
in the same direction. We substitute the value
for ω from part (a.) to get

F = FA + Fc =MA+
3
2
MA =

5
2
MA

8. K&K problem 8.4

(a.) This is a torque balance problem. A car of
mass m has front and rear wheels separated by a
distance l, and its center of mass is midway be-
tween the wheels a distance d off the ground. If
the car accelerates at a rate A, it feels a fictitious
force acting on the center of mass. This tends to
lift the front wheels. When the front wheels are
about to lift off the ground, the normal force on
the front wheels, Nf is zero. This means that the
normal force on the back wheels Nb must equal
the weight of the car, Nb = mg. The simplest ori-
gin to use in this problem is the point on the road
directly under the center of mass. Here there are
only three torques, due to the two normal forces
and fictitious force. The torque from Nb exactly
balances the torque from the fictitious force when
the wheels are about to lift, so we have

1
2
Nbl = mAd =

1
2
mgl ⇒ A =

l

2d
g

For the numbers given, A = 2g = 19.6 m/sec2.

(b.) For deceleration at a rate g, again we sim-
ply apply torque balance about the same origin.
We also need the fact that

Nf +Nb = mg

Torque balance gives
1
2
Nf l − 1

2
Nbl −mgd = 0

Substituting from the previous equation, we get

Nf =
(
1
2
+
d

l

)
mg

Nb =
(
1
2
− d

l

)
mg

Plugging in the numbers, we get Nf = 3mg/4 =
2400 lb, and Nb = mg/4 = 800 lb.


